Acute Myeloid Leukemia

Richard M Stone, MD Chief of Staff Director, Translational Research, Leukemia Division, Medical Oncology Dana-Farber Cancer Institute Professor of Medicine Harvard Medical School Boston, MA

Disclosures- Richard M. Stone, MD

- Consulting relationships past three years:
 - AbbVie*; Actinium, Agios*; Amgen; Argenix (DSMB); Arog*; Astellas; AztraZenaca; Biolinerx, Celgene (includes DSMB and steering committee); Fujifilm, Janssen; Juno; Macrogen-ics; Novartis*; Ono; Orsenix; Pfizer; Roche; Stemline, Sumitomo; Takeda (DSMB), Trovagene
 - * denotes support to my institution for clinical trials on which I was local PI
- Securities, employment, promotional activities, intellectual property, gifts, grants
 - None

Acute Myeloid Leukemia

• AML

- Biology and Epidemiology
- Endpoints and MRD
- Integrating New Therapies into Rx Algorithms
 - Acute Promyelocytic Leukemia
 - Younger adults-new dx
 - Midostaurin (+chemo in mutant FLT3 upfront)
 - Gemtuzumab (+ chemo in CD33+ upfront)
 - Older Adults-new dx
 - CPX-351 (upfront secondary)
 - Venetoclax +low dose chemo (upfront, unfit)
 - Relapsed Disease
 - Gilteritinib (single agent R/R FLT3 mutant)
 - Enasidenib/(ivosidenib) (R/R IDH2 (1) mutant)

AML: What is it and how did it get there?

- Unbridled proliferation of hematopoietic stem cells (myeloid lineage) resulting in marrow failure and patient death unless successfully treated
- Risk factors: AGE, prior chemo for other cancers, ionizing radiation, industrial solvents (last 3 probably <10% of incidence=15K new US cases annually); unusual but kindreds exist w germ-line mutations in >10 genes

Key Points from de novo AML Genome Atlas

key categories:

transcription-factor fusions (18%) nucleophosmin (NPM1) (27%) tumor-suppressor genes (16%) **DNA-methylation-related genes** (44%) signaling genes (59%) chromatin-modifying genes (30%)myeloid transcription-factor genes (22%) spliceosome-complex genes (14%) Cohesin complex (15%)

The Cancer Genome Atlas Research Network *NEJM* 2013; 368:2059-2074.

Döhner H et al, NEJM 2015; 373:1136-1152

Genomic Classification and Prognosis in AML

Papaemmanuil E et al. *NEJM.* 2016;374:2209-2221.

Current Risk Assessment in AML

Key Prognostic Data in AML in 2019

Patient age (FH, bleeding hx; ?Therapy related; ?Prior MDS)

Cytogenetics / fusion mRNA (screen for APL, MLL, Ph+, CBF)

Multiparameter flow

Molecular studies:

• <i>FLT3</i> ITD (internal tandem duplication) mutation	Unfavorable
• NPM1 mutation	Favorable
• CEBPA biallelic mutation	Favorable
• RUNX1, TP53, ASXL1 (? KIT in CBF)	Unfavorable

Of Future Importance: mutation status of IDH1/2, DNMT3A, TET2, etc.

Genetic Risk Group	Frequenc y	Survival	ELN 2017 Subset
Favorable	15%	65%	 t(8;21)(q22;q22); <i>RUNX1-RUNX1T1</i> inv(16)(p13.1q22) or t(16;16)(p13.1;q22); <i>CBFB-MYH11</i> Mutated <i>NPM1</i> without <i>FLT3</i>-ITD or <i>FLT3</i>-ITD ^{low} Biallelic Mutated <i>CEBPA</i>
Intermediate	55%	50%	 Mutated NPM1 and FLT3-ITD ^{high} Wild-type NPM1 without FLT3-ITD or FLT3-ITD ^{low} (without adverse-risk genetic lesions) Wild-type NPM1 and FLT3-ITD (normal karyotype) t(9;11)(p22;q23); MLLT3-MLL Any cytogenetics not classified as favorable or adverse
Adverse Döhner H et a	30% I, <i>Blood</i> 2017; 12	20% 29(4):424-447	 t(6;9)(p23;q34); DEK-NUP214 t(v;11)(v;q23); MLL (KMT2A) rearranged lnv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1 (GATA2, MECOM (EVI1) t(9;22)(q34.1;q11.2) BCR-ABL1 Monosomy 5 or del(5q); monosomy 7; monosomy 17; abnormal 17p Complex karyotype(≥ 3 abnormalities) or monosomal karyotype Wild-type NPM1 and FLT3-ITD ^{high} Mutated RUNX1 Mutated ASXL1
	., 2.000 2017, 17		Mutated TP53

AML: General Treatment Principles

 Goal 1: Induction therapy to reduce gross leukemia to undetectable levels (2-3 log cell kill); to achieve CR (no AML, nl CBC)

 Goal 2: Reduce 10⁹ - 10¹⁰ cells, undetectable by standard means, present at CR, to a level low enough to achieve prolonged disease-free survival ('cure')

AML: Key Endpoints

- Overall survival (OS)
- Event-free survival (event= no CR, relapse, death)
 - Somewhat correlated with OS
 - Has intrinsic value to pts: when no event they are in CR with acceptable counts
- Complete remission (CR)
 - CR with incomplete plt (or ANC) recovery has value
 - CR at MRD negative level has most value !

The MRD concept. x-axis represents time; y-axis represents tumor burden.

Hokland P, Ommen H B Blood 2011;117:2577-2584

How can we quantitate AML?

- Morphologically: 1 in 20

 insensitive
- Cytogenetically (metaphase) 1 in 20
- Cytogenetically (interphase)
- Multiparameter flow
- PCR based

1 in 100 1 in 10,000 1 in 10,000

MRD Based on PCR for Mutant NPM1 in Peripheral Blood After the Second Cycle of Chemotherapy Independently Predicts Clinical Outcomes

MRD = minimal residual disease; PCR = polymerase chain reaction.

Ivey A et al. N Engl J Med. 2016;374:422-433.

NGS-based detection of MRD also useful

- Jongen-Laurencic, M, et al NEJM 378:1189-1199, 2018 (Hovon-SAKK)
 - Age 18-65 AML, NGS at dx and relapse (N-482, 430 had at least one mutation at dx)
 - Persistence of DNMT3A, TET2, ASXL1 (DTA [CHIPlike, see Steensma, D et al, Blood , NEJM]) didn't carry risk, others did
 - MRD (non DTA) by NGS: 55 v 32% RR, 43 v 66% OS
 - Flow-based MRD was additive
 - If you were pos by both- worst, but either one pos- worse than neither

Rate of Relapse According to Results of Next-Generation Sequencing and Multiparameter Flow Cytometry.

Jongen-Lavrencic M et al. N Engl J Med 2018;378:1189-1199

Treatment of Acute Promyelocytic Leukemia

Key Principles of APL Management

Suspect the disease!

- Risk of death is greatest in the first two weeks after diagnosis, especially if ATRA initiation is delayed...
- So, if the clinical setting suggests the possibility of APL (e.g., clefted blasts, strong CD33+, DIC) **do not wait** for molecular confirmation to start ATRA

Document disease

- Use cytogenetics or FISH for t(15;17), or RT-PCR for *PML-RARA* fusion
- Variant translocations are rare, but important to know about, since several do not respond to ATRA

Assess risk

- If WBC >10 x 10⁹/L: <u>high risk</u>
- If WBC $\leq 10 \ge 10^{9}$ /L: <u>standard risk</u> (lowest risk if platelets also >40 x 10⁹/L)

Is the patient an anthracycline candidate?

APL 0406 Study

Acute Promyelocytic Leukemia Low/intermediate risk patients (WBC ≤10 x 10⁹/L, AGE 16-70)

LoCoco et al (NEJM 2013)

Overall Survival

Management of APL

AML Therapy for Patients Age <60 Years:

INDUCTION

- Daunorubicin 60-90 mg/m²/d x 3 (or ida 12 mg/m2/d x3)
 Cytarabine 100-200 mg/m²/d x 7 continuous infusion
- Midostaurin 50 mg bid day 8-21 for mut FLT3
- ? Add GO 3 mg/m2 d 1, 4, and 7, esp in CBF
- CPX-351, d 1, 3, and 5 for h/o MDS, MDS-type cytogenetics
- Decitabine 20 mg/m2 x 10d +venetoclax 400 mg/d: TP53

POST-REMISSION

- CBF: High dose ara-C 3 g/m2/3h q12h d1, 3, and 5 x 4 cycles
- NPM1 mut/FLT3 WT: as above, ex ? 1.5 g/m2
- Adverse risk: Allo SCT w best available donor
- Intermediate risk: AlloSCT if Sib or MUD, otherwise as per NPM1 mut/FLT3 WT

Consolidation: DFS (and OS) Benefit Only in Patients < 60 Years Receiving High-Dose Ara-C

Age < 60

Age > 60

Bloomfield CD, et al. *Cancer Res*.1998;58(18):4173-4179; Neubauer A, et al. *J Clin Oncol.* 2008; 26(28):4603-4609; Mayer RJ, et al. *N Engl J Med*. 1994;33(1):896-903.

FLT3 Structure and Activating Mutations

CALGB 10603: Prospective Phase III, double-blinded randomized study of induction and consolidation +/- Midostaurin (PKC412) in newly diagnosed patients < 60 years old with FLT3 mutated AML

Not on STUDY: FLT3 WILD TYPE Study drug is given on Days 8-21 after each course of chemotherapy, and Days 1-28 (note change) of each 28 day Maintenance cycle.

Protocol Therapy

Induction (2nd cycle given based on d21 marrow)	daunorubicin cytarabine midostaurin or placebo	60 mg/m ² IVP days 1-3 200 mg/m ² /d d 1-7 via IVCI 50 mg po bid days 8-21
Consolidation (up to 4 cycles)	cytarabine midostaurin or placebo	3 gm/m ² over 3h q 12h days 1, 3, and 5 50 mg po bid days 8-21
Maintenance	midostaurin or placebo	50 mg po bid days 1-28 x 12 cycles

• Transplant not specifically mandated

Stone R, et al. *Blood.* 2015;126: Abstract 6.

Consort Diagram

Stone RM, et al. *Blood.* 2015;126: Abstract 6.

Overall Survival (Primary Endpoint) 23% Reduced Risk of Death in the MIDO Arm

• Median OS: MIDO 74.7 (31.7-NE); PBO 25.6 (18.6-42.9) months

Controlled for FLT3 subtype (TKD, ITD-Low, ITD-High)

Stone RM, et al. Blood. 2015;126: Abstract 6.

Overall Survival: Post-Transplant Treatment With MIDO Increases OS After SCT in CR1

ARO-021: Phase III Comparison of Crenolanib with Midostaurin in Combination with Chemotherapy

Primary Endpoint

• Event-free survival

Secondary Endpoints

- Overall survival
- Relapse-free survival
- Composite complete remission rate
- Duration of response

Mylotarg (gemtuzumab ozogamicin)

Gemtuzumab Ozogamicin: Recent Re-Approval

Castaigne S et al, <u>Lancet</u> 379:1508-1516, 2012

ALFA-0701: Event-Free Survival – Primary Analysis

mITT population; Data cutoff date: August 1, 2011 mITT=modified Intention-To-Treat

Hills RK et al. Lancet Oncol 2014;15:986–996

GO meta-analysis: Cytogenetics

Survival in AML in Age \geq 60 Years (MDACC, 1973-Present, n=1647)

Years

Why Do Older Patients With AML Experience Inferior Outcomes?

- Decreased host tolerance of intensive therapy
 - Impaired hematopoietic stem cell reserve
 - Presence of comorbid diseases
 - Decreased chemotherapy clearance
- Increased resistance of disease to therapy
 - Ratio of favorable (eg, t[8;21]) to unfavorable (eg, -7) cytogenetics is lower than for younger patients
 - Higher expression of drug resistance proteins (eg, PGP)
 - Higher incidence of antecedent hematologic disorders

New RX Algorithm in Older Adults with AML

- FIT, FLT3 mutation (TKD or ITD): 3+7+mido
- FIT, CBF: 3+7+GO
- FIT, MRC-related cytogenetics, h/o MDS, prior rx for CA: CPX-351
- FIT, NOS: 3+7
- UNFIT, or >75 yo: aza (7d) +venetoclax
- UNFIT, IDH1 or IDH2 mut: ivo- or enasidenib
- ANY FITNESS: TP53 mut: 10d decit+ven
- Add lomustine to 3+7 wo unfav cytog (Pigneux A et al, JCO, 2019)
- Post CR
 - alloSCT if poss (Devine et al , JCO 2015)
 - Cont low dose rx (Dinardo et al Blood 2019)
 - Maint aza imp DFS (Huls, et al, Blood 2019)

In Elderly de novo AML, Secondary-Type Mutations Are Associated With Adverse Outcomes

Genetic Subtype De novo/pan-AML

Secondary-type

TP53 mutated

Lindsley RC et al. Blood. 2015;125:1367-1376

CPX-351

- CPX-351 is a liposomal coformulation of cytarabine and daunorubicin designed to achieve synergistic antileukemia activity
 - 5:1 molar ratio of cytarabine:daunorubicin provides synergistic leukemia cell killing *in vitro*¹
 - In patients, CPX-351 preserved delivery of the 5:1 drug ratio for over 24 hours, with drug exposure maintained for 7 days²
 - Selective uptake of liposomes by bone marrow leukemia cells in xenograft models³

CPX-351 Phase III Study Design

- Randomized, open-label, parallel-arm, standard therapycontrolled
 - 1:1 randomization, enrolled from December 2012 to November 2014
 - Patients with CR or CRi could be considered for allogeneic HCT, based on institutional criteria

Stratifications:

- Therapy-related AML
- AML with history of MDS with and without prior HMA therapy
- AML with history of CMML
- *De novo* AML with MDS karyotype
- 60–69 years
- 70–75 years

recovery; ECOG PS, Eastern Cooperative Oncology Group performance status; HMA, hypomethylating agents; MDS, myelodysplastic syndrome.

1. World Health Organization. WHO Classification of Tumours of Haematopoitic and Lymphoid Tissues. Swerdlow S et al (ed). Lyon, 38 IRAC Press, 2008.

Key Eligibility

- Previously untreated
- Ages 60–75 years
- Able to tolerate intensive therapy
- ECOG PS 0-2

were alive: CPX-351 (n = 49): 589 days (range: 44-1007); 7+3 (n = 24): 601 days (range: 417-917).

CI, confidence interval; CR, complete response; CRi, CR with incomplete platelet or neutrophil recovery; HSCT, hematopoietic stem cell 39

Survival Landmarked from Time of Transplant

- CPX-351 median OS not reached vs 10.25 months for 7+3
 - HR of 0.46 favoring CPX-351 (*P*=0.0046)
 - Cox proportional hazards HR, including transplant as a time-dependent covariate, was 0.51 (95% CI, 0.35–0.75; *P*=0.0007), favoring CPX-351

Lancet et al, ASH 2016

Venetoclax: BCL-2 Selective Inhibitor

BCL-2 overexpression allows cancer cells to evade apoptosis by sequestering pro-apoptotic proteins

Konopleva M, et al. Cancer Discov. 2016. Epub ahead of print. Lin T, et al. ASCO 2016. Abstract 7007.

Venetoclax+low dose ara-C new dx

- >60 yo, inelig for intensive chemo (HMA for prior MDS allowed)
- TLS ppx, ramp up ven to target (dose reduced if CYP3Ai used): 600 mg/d + ara-C 20 mg/m2/d sc x 10d
- ► N=82

Wei A et al. Blood. 2019

NCT02203773

Study Overview

- **400 mg venetoclax** was the recommended phase 2 dose
 - | Pollyea D, et al , ASH 2018, Dinardo C, Blood, 2019

Response Rates of CR/CRi by Combination: VEN+HMA

Venetoclax with HMAs induces rapid, deep, and durable responses in older patients with AML | ASH 2018

Pollyea D, et al , ASH 2018, Dinardo C, Blood, 2019

44

Response Rates of CR/CRi by Patient Subgroups

45

enetoclax with HMAs induces rapid, deep, and durable responses in older patients with AML | ASH 2018

Pollyea D, et al , ASH 2018, Dinardo C, Blood, 2019

Overall Survival

Venetoclax with HMAs induces rapid, deep, and durable responses in older patients with AML | ASH 2018

TP53 and Decitabine in AML

Overall Survival

Survival According to TP53 Mutation

NA = not applicable; PD = progressive disease; PR = partial remission; SD = stable disease.

Welch JS et al. *N Engl J Med.* 2016;375:2023-2036.

DEC10-VEN in AML/MDS CR/CRi Rates in Subgroups

Newly dx AML and untreated sAML	n/N (%)	
Mutational subgroups		
NPM1	8/8 (100)	
IDH1/2	5/5 (100)	
FLT3	3/4 (75)	
TP53	4/4 (100)	
ASXL1	5/5 (100)	
RUNX1	5/5 (100)	
RAS	3/4 (75)	
ELN subgroups		
Favorable	6/6 (100)	
Intermediate	10/10 (100)	
Adverse	10/11 (91)	

30-day mortality – 8%, 60-day mortality – 10% Maiti et al, ASH 2018 Relapsed AML: Induce CR2, then allo SCT

- FLAG-IDA, MEC are typical salvage regimens (can repeat 3+7 if >1 y ds-free interval)
- If IDH2 mutant: consider enasidenib
- IF IDH1 mutant: consider ivosidenib
- IF FLT3 mutant: gilteritinib/quizartinib
- Fractionated gemtuzumab if unfit
- Clinical trial (spliceosome inhib, HH pathway, pro-apoptotic [BCL-2i, MDM2i], chemo + Eselectin inhibitor)

Isocitrate Dehydrogenase (IDH) Mutations as a Target in AML

IDH Inhibitor Data

AG120=ivosidenib

- Most common AEs: diarrhea, fatigue, and pyrexia
- Overall response rate of 35% and a complete remission rate of 15%
- In all response evaluable patients, an estimated 55% had treatment duration of at least 33%
- Differentiation syndrome

AG221=enasidenib

- Most common AEs: nausea, fatigue, increase in bilirubin, diarrhea
- ORR 37% in 159 adults w R/R
 AML
 - CR 18%
 - Median duration of response of 6.9 months
- Differentiation syndrome

Single-arm, open-label, phase 1, multicenter trial study Study Design and Objectives: Ivosidenib in mutant IDH1 ds

Study objectives

Primary	Safety and tolerability, MTD and/or RP2D, clinical activity mIDH1 R/R AML enrolled in expansion Arm 1
Secondary	DLTs, pharmacokinetics and pharmacodynamics (including 2-HG), preliminary clinical activity in advanced hematologic malignancies
Exploratory	Determination of comutations and mIDH1 variant allele frequency (VAF)

ClinicalTrials.gov NCT02074839. DLTs, dose limiting toxicities; MTD, maximum tolerated dose; RP2D, recommended phase 2 dose

Dinardo et al, NEJM 2018

Response in R/R AML

	Primary R/R AML Set (n=125)
CR+CRh rate, n (%) [95% CI]	38 (30.4%) [22.5, 39.3]
Time to CR/CRh, median (range) months	2.7 (0.9, 5.6)
Duration of CR/CRh, median [95% CI] months	8.2 [5.5, 12.0]
CR rate, n (%) [95% CI]	27 (21.6%) [14.7, 29.8]
Time to CR, median (range) months	2.8 (0.9, 8.3)
Duration of CR, median [95% CI] months	9.3 [5.6, 18.3]
CRh rate, n (%)	11 (8.8%)
Overall Response Rate, n (%) [95% Cl]	52 (41.6%) [32.9, 50.8]
Time to first response, median (range) months	1.9 (0.8, 4.7)
Duration of response, median [95% CI] months	6.5 [4.6, 9.3]
Best response	
CR, n (%)	27 (21.6)
CRi or CRp, n (%)	16 (12.8)
MLFS, n (%)	9 (7.2)
SD, n (%)	44 (35.2)
PD, n (%)	13 (10.4)
NA, n (%)	16 (12.8)

leukemia-free state; NA, not assessed; ORR, objective response rate; PD, progressive

Dianrdo et al, NEJM 2018

By-subject VAF of Known/Likely Co-occurring Mutations at Baseline by Response to Ivosidenib Treatment (R/R AML at 500 mg QD (Bone Marrow, N=142, NGS)

0.001 by Fisher's exact test; ()

² All detected FLT3 mutations were FLT3-TKD

Dinardo C, et al, NEJM 2018

55

Quizartinib and Gilteritib: Second Generation FLT3 Inhibitors

- Quizartinib is potent in vivo than any other FLT3 inhibitor to date^{4,5}
- But selection of resistance with FLT3-TKD mutations
- Possible QT prolongation at higher doses
- Gilteritinib 'hits' both ITD and TKD subtypes
- Well tolerated

QuANTUM-R Study Design

Primary endpoint: overall survival (ITT population) Secondary endpoint: event-free survival (ITT population) Select exploratory endpoints: CRc rate, duration of CRc, and transplant rate Enrollment dates: May 2014 (first patient) to September 2017 (last patient) Data cutoff: February 2018

CRc, composite complete response; QT interval corrected using Fridericia's correction formula. ^a20 mg \times 15 days \rightarrow 30 mg if concomitantly taking CYP3A4 inhibitors.

Primary Endpoint: Overall Survival ITT population

Median follow-up: 23.5 months

Antileukemic Response to $\geq 80 \text{ mg/day Gilteritinib}$ in FLT3^{mut+} Patients by Mutation Type and TKI Status

Perl et al, Lancet Oncology, 2017

Admiral Trial, AACR 2019 (Perl A et al): Gilteritinib v dealer's choice chemo in R/R mutant *FLT3* AML

- Randomized (2:1) to receive continuous 28-day cycles of 120 mg/day gilteritinib or pre-randomization selected SC: (LoDAC), azacitidine (AZA), (MEC), or (FLAG-IDA).
- N=371 : 247 to gilteritinib and 124 to SC (MEC, 25.7%; FLAG-IDA, 36.7%; LoDAC, 14.7%; AZA, 22.9%).
- Median age = 62 years ; FLT3-ITD, 88.4%; 61% Relapsed, 39% refractory
- OS favored gilt:(9.3 months v 5.6 months; hazard ratio [HR] for death = 0.637; P=0.0007)
- 1-year survival rates were 37.1% and 16.7%, G v chemo.
- CR/CRh 34.0% and 15.3%, respectively (P=0.0001)
- Giltertinib has been approved for R/R mutant FLT3 AML (Quiizartinib has not)

Acute MyeloidLeukemia: Conclusions

- Mutations/Cytogenetics/Host factors
- Still don't know how to use MRD
- New Therapies
 - Midostaurin (+ chemo in FLT3 mutant upfront)
 - Gilteritinib (single agent R/R *FLT3* mutant)
 - Enasidenib/(ivosidenib) (R/R IDH2 (1) mutant)
 Ivo recently approved for upfront use
 - Gemtuzumab (+chemo in CD33+ upfront)
 - CPX-351 (upfront secondary)
 - Venetoclax +low dose chemo (upfront, unfit)
 - Glasdegib + low dose cytarabie (upfront, unfit)
- Need to wait for rand aza+/- ven and early combo trials (e.g., aza/ven/gilt)

Acknowledgements

- Clinical Team at DFCI:
 - Dan DeAngelo, Martha Wadleigh, David Steensma, Jackie Garcia, Goyo Abel, Eric Winer, Marlise Luskin
 - Ilene Galinsky, NP
 - Andriana Penicaud, PA, Kat Edmonds , NP, Mary Girard, PA, Sioban Creedon, NP
 - BMT Team: Alyea, Antin, Armand, Cutler, Ho, Koreth, Soiffer
- Scientific Team at Dana-Farber/Harvard Cancer Center
 - Ben Ebert; Andy Lane, Coleman Lindsley, Jim Griffin; Tony Letai, David Weinstock, David Frank, Kim Stegmeir, Donna Neuberg, Tom Look, S Armstrong
- Alliance
 - R Larson, G Marcucci, W Blum, G Uy, G Roboz, J Kolitz, S. Mandrekar
- Academic Collaborators
 - Local: D Avigan, J Rosenblatt; P Amrein, A Fathi, A Brunner, T Graubert
 - Worldwide: C Schiffer, T Fischer, H Dohner, C Thiede, and many others.